Collection de cas d'usage à impact positif sur l'environnement

TABLE DES MATIERES

1 Tre	ansport et mobilité	2
1.1	Optimisation de tournées de ramassage scolaire	2
1.2	Refonte du plan de transport messagerie BtoB	3
1.3	Optimisation du réseau de distribution	4
1.4	Optimisation des déplacements de techniciens	5
1.5	Offre de stationnement dynamique	6
1.6	Optimisation des déplacements des fournisseurs	7
1.7	Amélioration de la disponibilité des vélos en libre-service	8
1.8	Optimisation et automatisation du pilotage de recharge des bus électriques	9
1.9	Optimisation déplacements camions transportant des produits agricoles	10
2 Re	ecyclage	11
2.1	Classification automatique des déchets pet	11
2.2	Détection de dépôts sauvages de déchets	12
2.3	Optimisation processus recyclage cartes électroniques	13
2.4	Optimisation de la performance des sites de remblais	14
3 Er	nergie	15
3.1	Prédiction de la production de panneaux photovoltaïques	15
3.2	Classification de défauts sur les éoliennes offshore	16
3.3	Prédiction de la consommation de gaz	17
4 C	onstruction	18
4.1	Reduction de l'empreinte carbone des bâtiments	18
4.2	Reconnaissance d'activité humaine dans les bâtiments	19
4.3	Mesure des déperditions thermiques des bâtiments	20
5 A	griculture	21
5.1	Identification des cultures et suivi des pratiques agricoles	21
6 Er	vironnement	22
6.1	Contextualisation de la qualité de l'air	
	dustrie	
7. 1	Optimisation de la consommation d'un moteur hybride	
7.1	Ordonnancement des chaines de peinture	
7.3	Optimisation des nettoyages de lignes de production agroalimentaires	
7.0	Optimisation de la gestion de l'agus utilisée dans les procèdes industriels chimiques	

TRANSPORT ET MOBILITE

OPTIMISATION DE TOURNEES DE RAMASSAGE SCOLAIRE

DESCRIPTION DU CAS

Optimisation de tournées de ramassage scolaire pour limiter le kilométrage à vide et la consommation d'énergie.

OBJECTIFS

Limiter le nombre de kilomètres parcourus et donc la consommation de carburant.

APPROCHE

Approche basée sur de la Recherche Opérationnelle afin d'affecter les bonnes ressources aux bonnes tournées afin de limiter le kilométrage à vide.

DONNÉES

Lieux de ramassage et de dépose des écoliers, lieux de dépôt des bus.

RÉSULTATS

500 000 kilomètres économisés la première année. Hypercroissance pour Transarc, passant de 120 à 1200 personnes en 4 ans.

CONTRIBUTEUR

SECTEUR

Transport

MATURITÉ

Déployé

INFRASTRUCTURE TECHNOLOGIES

Cloud

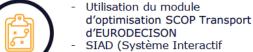
IMPACT ENVIRONNEMENTAL

Réduction de consommation de carburant équivalente à plus de 500 000 litres par an sur la première année d'exploitation

Hub France IA P. 2 / 26

1.2 REFONTE DU PLAN DE TRANSPORT MESSAGERIE BTOB

DESCRIPTION DU CAS


Refonte du plan de transport messagerie BtoB de GEFCO France (aujourd'hui CEVA LOGISTICS) (40 agences) – 400 camions / jour

OBJECTIFS

À la suite d'un audit de l'activité :

- Refondre le plan de transport afin d'optimiser les composants coûts, qualité et délai
- Ne fermer aucune agence et veiller à la stabilité de l'activité
- Remporter l'adhésion des équipes opérationnelles

APPROCHE

 SIAD (Système Interactif d'Aide à la Décision) pour lancer des optimisations locales à partir de la solution initiale

DONNÉES

- Volumes à transporter
- Localisation et typologie des sites
- Contraintes dont spécificités locales
- Coûts

RÉSULTATS

- Diminution du nombre de camions quotidiens
- Augmentation de la part du tonnage en 24h (+35%)
- Gain financier de 2 M€ sur le composant transport

CONTRIBUTEUR '

ACTEUR

SECTEUR

Transport

MATURITÉ

Déployé

INFRASTRUCTURE 'TECHNOLOGIES

Méthodes de Recherche Opérationnelle Software

IMPACT ENVIRONNEMENTAL

Réduction de 11% des km parcourus, correspondant à 5,2 millions de km/an, soit une réduction des émissions de CO2 entre 3.000 et 4.000 tonnes.

Hub France IA P. 3 / 26

1.3 OPTIMISATION DU RESEAU DE DISTRIBUTION

DESCRIPTION DU CAS

Optimisation du réseau de distribution « hors domicile » (ex. restaurant, fast-foods...)

OBJECTIFS

Optimiser l'organisation des réseaux logistiques pour la distribution des produits « hors domicile » de PepsiCo, en agissant sur plusieurs leviers :

- la fusion de différents réseaux « historiques »
- la réduction du nombre de plates-formes et la définition de nouvelles implantations
- l'optimisation des flux

APPROCHE

Utilisation du module d'optimisation SCOP Network Design d'EURODECISION

DONNÉES

- Localisation et zones de chalandise des entrepôts
- Infos haute/basse saison
- Poids et volume des marchandises transportées
- Retour des bouteilles consignée

RÉSULTATS

- Réduction du nombre de plateformes logistiques
- Massification des volumes
- Réduction des coûts de transport de l'ordre de 20%
- Amélioration du service commercial en élargissant l'offre de produits disponibles sur chaque site logistique

CONTRIBUTEUR

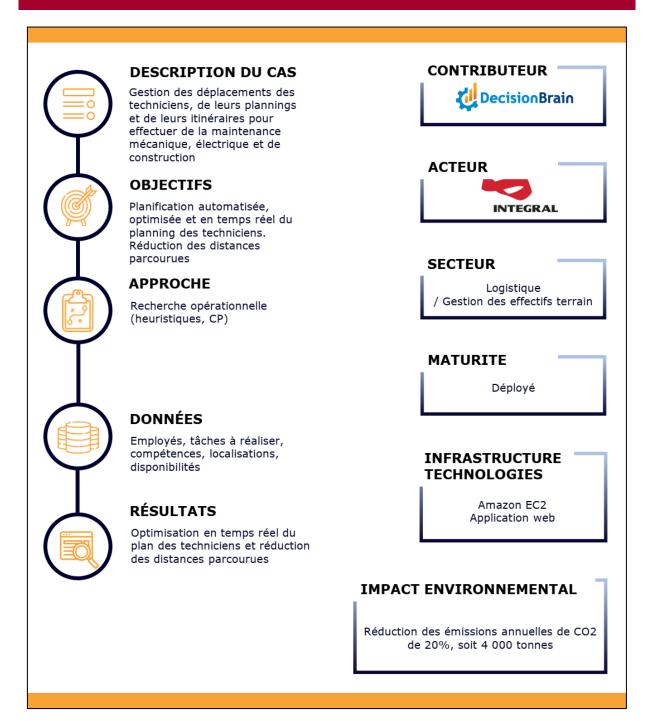
SECTEUR *

Agroalimentaire

MATURITÉ

Déployé

INFRASTRUCTURE TECHNOLOGIES


Méthodes de Recherche Opérationnelle

IMPACT ENVIRONNEMENTAL

Réduction de l'émission de CO2 de l'ordre de 1 000 T du réseau de distribution

Hub France IA

1.4 OPTIMISATION DES DEPLACEMENTS DE TECHNICIENS

Hub France IA P. 5 / 26

1.5 OFFRE DE STATIONNEMENT DYNAMIQUE

DESCRIPTION DU CAS

Collectivités : difficulté de connaître l'occupation réelle des aires de livraison

Transporteurs : manque d'information sur la disponibilité des places et le temps légal de stationnement

OBJECTIFS

Collectivités : connaître le besoin réel de stationnement professionnel sur les aires de livraison, adapter l'offre de stationnement et en suivre l'usage réel

Transporteurs : faciliter leur accès à des aires de livraison en zone urbaine

APPROCHE

Développer une application mobile, « **Delivery Park** », qui remplace le disque de stationnement PL/VUL et qui permet de récupérer des données terrain afin de cartographier en temps réel les places et leur occupation

DONNÉES

Données de localisation et d'occupation des aires de livraison, typologie des véhicules en stationnement, profession de l'entreprise utilitaire, temps de stationnement autorisé

RÉSULTATS

- Cartographie et pilotage optimisé de la logistique urbaine par les collectivités
- Visualisation des aires de livraison disponibles en temps réel pour les livreurs

CONTRIBUTEUR

Fast track to AI

ACTEUR

Collectivités Transporteurs

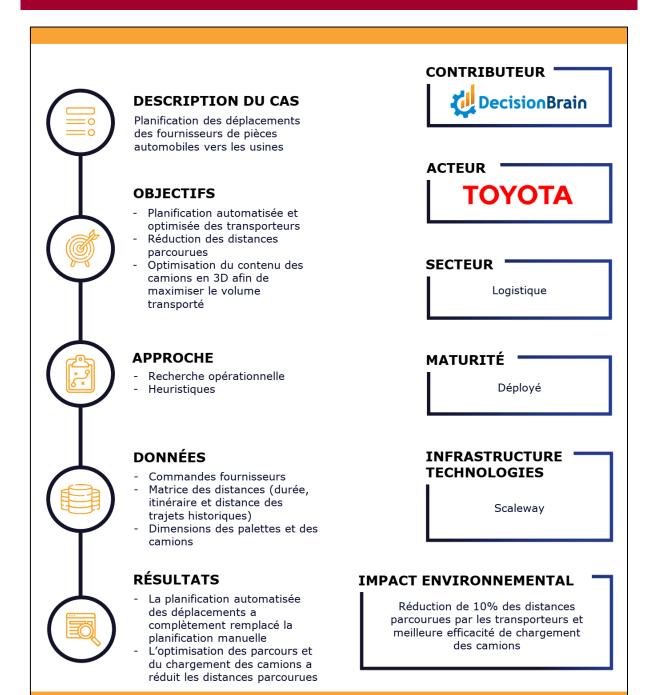
SECTEUR '

Transport & Logistique, Logistique Urbaine

MATURITE *

Déployé

INFRASTRUCTURE TECHNOLOGIES


Application smartphone et web

IMPACT ENVIRONNEMENTAL

Baisse de l'empreinte carbone du territoire : en diminuant la congestion routière en ville et en réduisant le temps pour trouver une place de livraison (baisse du trafic inutile)

Hub France IA P. 6 / 26

1.6 OPTIMISATION DES DEPLACEMENTS DES FOURNISSEURS

Hub France IA P. 7 / 26

1.7 AMELIORATION DE LA DISPONIBILITE DES VELOS EN LIBRE-SERVICE

DESCRIPTION DU CAS

Améliorer la disponibilité du service de vélos en libre service à Londres et la satisfaction des usagers

OBJECTIFS

- Optimisation de la distribution de vélos dans les stations afin d'éviter les stations pleines ou vides
- Optimisation et automatisation de la planification de l'entretien des vélos

- Machine learning (prévision de la demande des vélos)
- Recherche opérationnelle

DONNÉES

- Machine learning : historique d'usage des vélos, météo
- Recherche opérationnelle : répartition des stations, nombre de vélos garés, emplacements en temps réel des camions d'entretien et horaires de travail des conducteurs

RÉSULTATS

- Les déplacements pour redistribuer les vélos dans les stations sont réduits
- Un nombre croissant d'utilisateurs peut profiter du service grâce à l'optimisation des déplacements
- L'organisation de l'entretien des vélos est planifiée et optimisée

CONTRIBUTEUR *

SECTEUR

Logistique

MATURITÉ

Déployé

INFRASTRUCTURE TECHNOLOGIES

Private cloud

IMPACT ENVIRONNEMENTAL

Réduction des déplacements et distances effectués annuellement par les camions chargés de la redistribution et de l'entretien des vélos

Hub France IA

1.8 OPTIMISATION ET AUTOMATISATION DU PILOTAGE DE RECHARGE DES BUS ELECTRIQUES

DESCRIPTION DU CAS

Optimisation et automatisation du pilotage de recharge des bus électriques

OBJECTIFS

Gérer automatiquement la recharge de chaque bus

- en prévision des besoins du lendemain
- de façon à supprimer les pics de consommation et réduire les coûts d'infrastructure et d'exploitation.

- Un moteur d'optimisation intégré à la solution de supervision
- Dimensionnement évolutif en fonction du développement du parc de bus et du nombre de lignes sur le réseau (deux versions disponibles)

DONNÉES

- La liste des bus (dont horaire d'arrivée au dépôt, charge prévisionnelle, vitesse de charge)
- La liste des services (dont horaire de départ, énergie consommée nécessaire à sa couverture)
- Description du réseau électrique et des compatibilités entre équipements (transformateurs, chargeurs, prises)

RÉSULTATS

- Optimisation de l'affectation des véhicules aux prises
- Gestion de configuration de mutualisation de chargeurs
- Optimisation du rendement

CONTRIBUTEUR '

ACTEUR

Equipementier infrastructure transport

SECTEUR '

Transport public

MATURITÉ

Déploiement en cours

INFRASTRUCTURE TECHNOLOGIES

Méthodes de Recherche Opérationnelle Software

IMPACT ENVIRONNEMENTAL

Meilleure utilisation des véhicules électriques : équilibrage de l'énergie consommée par les bus, minimisation du temps de charge et augmentation du nombre de passagers transportés

Hub France IA P. 9 / 26

1.9 OPTIMISATION DEPLACEMENTS CAMIONS TRANSPORTANT DES PRODUITS AGRICOLES

DESCRIPTION DU CAS

Optimisation de la planification des déplacements des camions transportant des biens de consommation et des produits agricoles au Ghana

OBJECTIFS

Planning automatisé et optimisé des déplacements des camions selon les commandes, permettant notamment de :

- Réaliser des économies de

- Realiser des economies de carburant
- Optimiser les délais de livraison
- Réduire l'usure des camions

APPROCHE

Recherche opérationnelle (mixed-integer programming)

DONNÉES

- Commandes (quantités, emplacements, etc.)
- Trajets (site de production vers port, ou port vers site de livraison)
- Camions (capacité, position de base, position finale, dernière position connue du camion, disponibilité, etc.)

RÉSULTATS

- Le planning est créé et adapté en temps réel
- Les déplacements des camions sont optimisés

CONTRIBUTEUR *

ACTEUR

Transporteur de produits agricoles, biens de consommation, engrais, etc.

SECTEUR

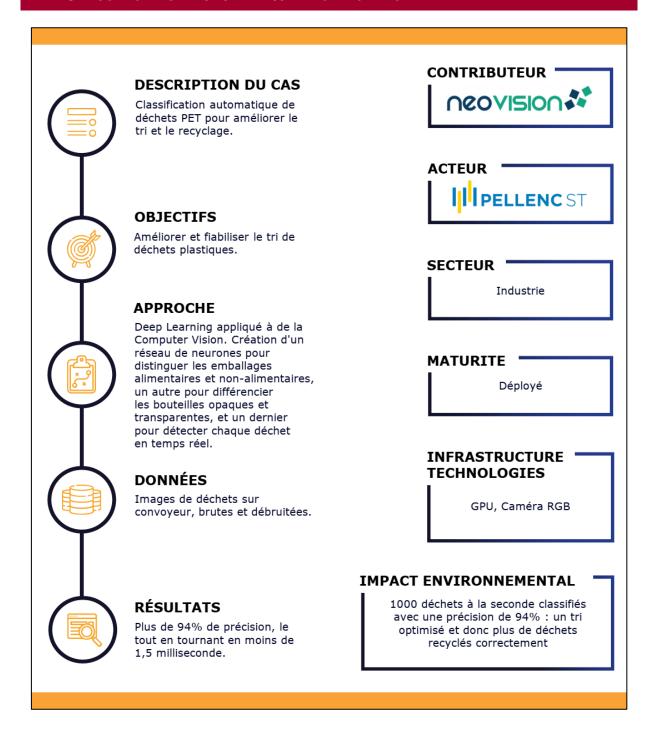
Logistique

MATURITÉ

Déployé

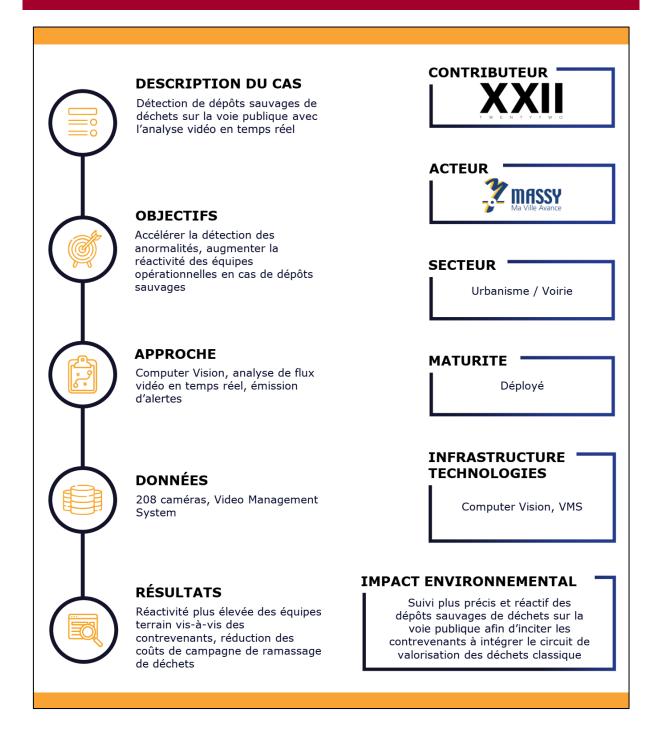
INFRASTRUCTURE TECHNOLOGIES

Private cloud


IMPACT ENVIRONNEMENTAL

- Diminution de l'empreinte carbone :
- Réduction des déplacements et distances effectués par les camions transporteurs
- Optimisation de la durabilité des camions

Hub France IA P. 10 / 26


2 RECYCLAGE

2.1 CLASSIFICATION AUTOMATIQUE DES DECHETS PET

Hub France IA P. 11 / 26

2.2 DETECTION DE DEPOTS SAUVAGES DE DECHETS

Hub France IA P. 12 / 26

2.3 OPTIMISATION PROCESSUS RECYCLAGE CARTES ELECTRONIQUES

DESCRIPTION DU CAS

Dans une économie circulaire, REI Industry, identifie, trie, classe et met en vente en ligne, manuellement, chacune des centaines de cartes électroniques industrielles reçues quotidiennement

OBJECTIFS

Optimiser le processus de reconnaissance et d'intégration de cartes électroniques récupérées lors du démantèlement de lignes industrielles de production

APPROCHE

Limiter au maximum les tâches à faible valeur ajoutée et les risques d'erreurs par la reconnaissance IA d'image et de texte

DONNÉES

Données externes (sites web constructeurs, plateformes de vente en ligne), données internes (logiciel métier), photos prises des cartes

RÉSULTATS

- Automatisation de l'identification et de la caractérisation des cartes électroniques avec aide à la prise de décision
- Intégration de l'expertise sur une application mobile et un logiciel métier
- Outil digital de formation

ACTEUR

SECTEUR '

Réemploi d'équipement électronique industriel

MATURITE -

MVP / Industrialisation

INFRASTRUCTURE 'TECHNOLOGIES

Computer vision OCR Scraping Web

IMPACT ENVIRONNEMENTAL

Amélioration significative du réemploi des équipements électroniques industriels. Diminution des déchets industriels

Hub France IA P. 13 / 26

2.4 OPTIMISATION DE LA PERFORMANCE DES SITES DE REMBLAIS

DESCRIPTION DU CAS

Optimisation de la performance des sites de remblais et diminution des dépôts frauduleux

OBJECTIFS

- de v - Me des - Me
- Mesurer le temps entre deux rotations de véhicules transportant du déblais
 - Mesurer le temps de présence sur site des véhicules
 - Mesurer la fréquence de dépôts
 - Identifier des dépôts non autorisés et des dépôt sauvages
 - Assurer le taux de remplissage
 - Assurer la conformité des matériaux déposés

APPROCHE

- Mise à disposition d'un mât de vidéo surveillance autonome avec un boîtier électrique pour la transmission des flux vidéo
- Mise à disposition de licences IA de détection
- Mise à disposition d'un tableau de bord avec les KPIs adaptés

DONNÉES

- Flux vidéos issus du mât vidéo
- Données taguées de détection
- Chiffres clés (nombre de passages, nombre de véhicules léger / lourd, immatriculations autorisées, volume estimé entrant...)

- Dépôts sauvages le week-end
- Véhicules professionnels non autorisés
- Véhicules surchargés
- Périodes creuses en semaine
- Forte variabilité du temps de rotation

CONTRIBUTEUR '

ACTEUR

Entreprise de gestion et de valorisation des terres excavées

SECTEUR

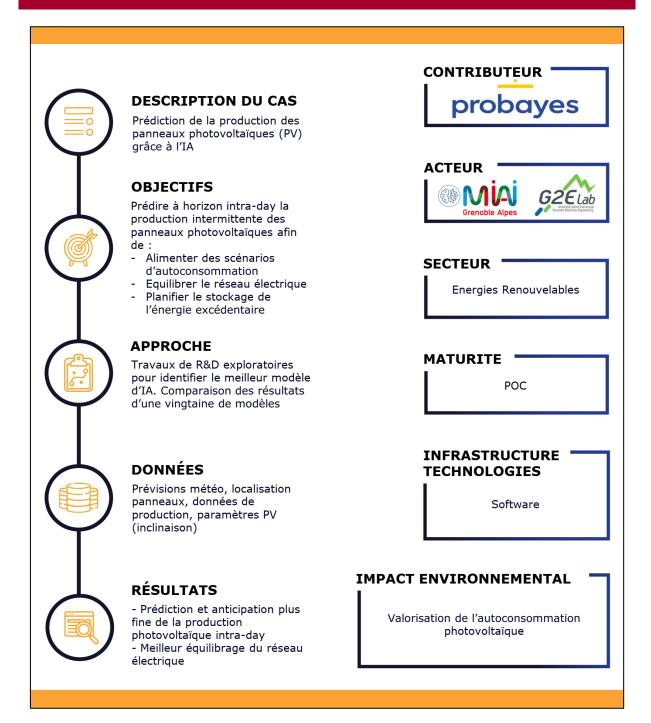
BTP

MATURITÉ

Prototypage déployé sur 6 mois

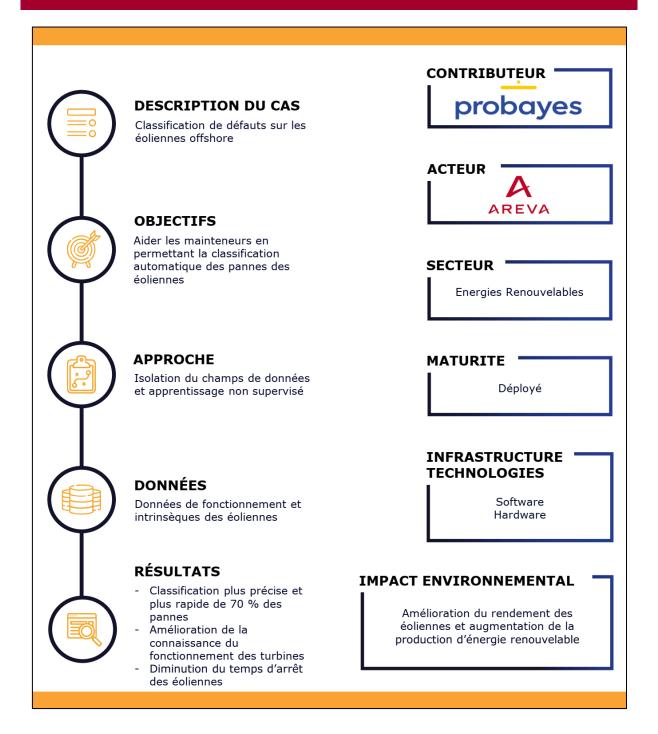
INFRASTRUCTURE TECHNOLOGIES

Hardware : caméra, antenne, modem, ordinateur de calcul... Software : cloud, Computer Vision, statistiques

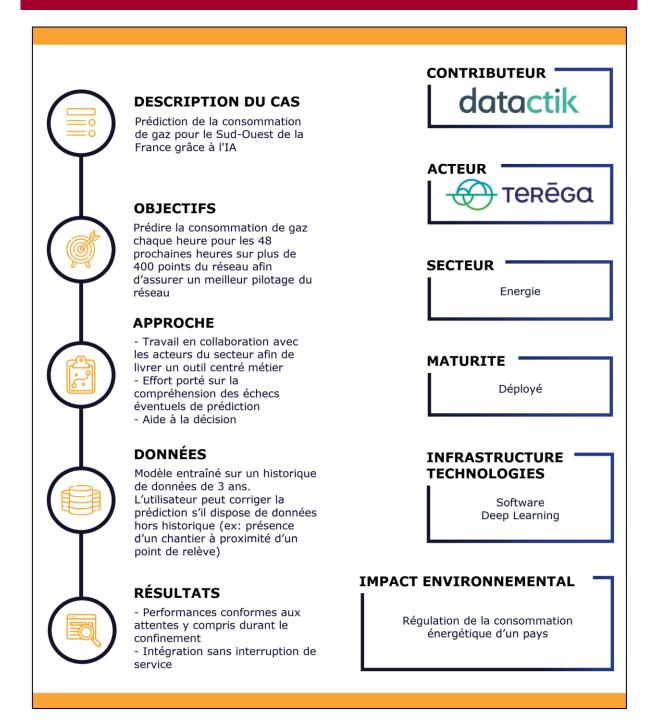

IMPACT ENVIRONNEMENTAL

 Limitation des dépôts sauvages
 Réduction de l'empreinte carbone de l'activité : optimisation de l'usage des pelles sur site et réduction de la consommation de carburant des véhicules transporteurs

Hub France IA P. 14 / 26

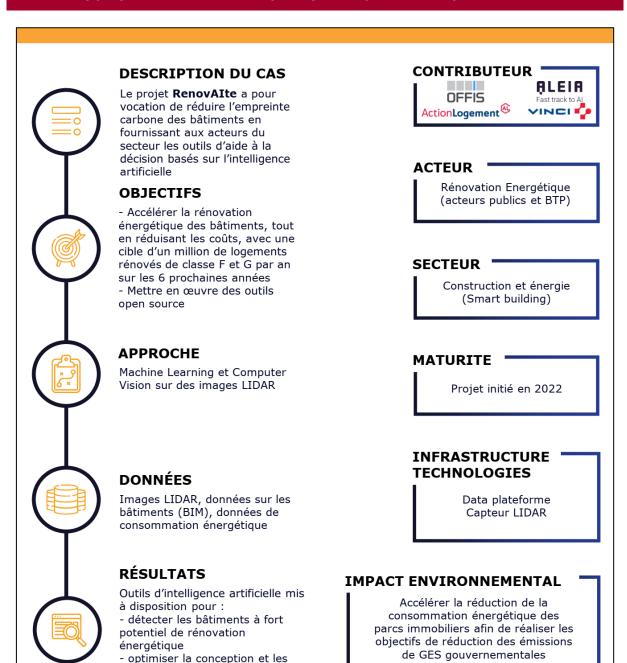

3 ENERGIE

3.1 Prediction de la production de panneaux photovoltaïques


Hub France IA P. 15 / 26

3.2 CLASSIFICATION DE DEFAUTS SUR LES EOLIENNES OFFSHORE

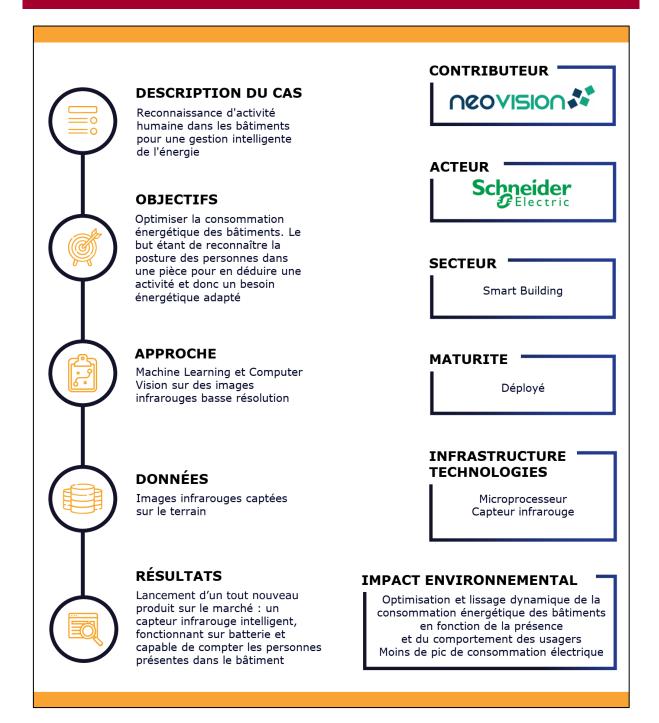
Hub France IA P. 16 / 26


3.3 Prediction de la consommation de gaz

Hub France IA P. 17 / 26

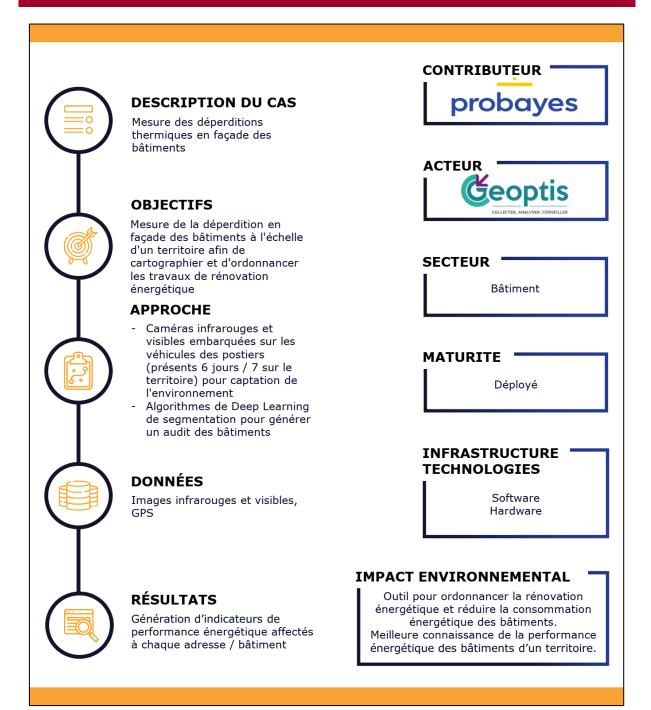
CONSTRUCTION

4.1 REDUCTION DE L'EMPREINTE CARBONE DES BATIMENTS



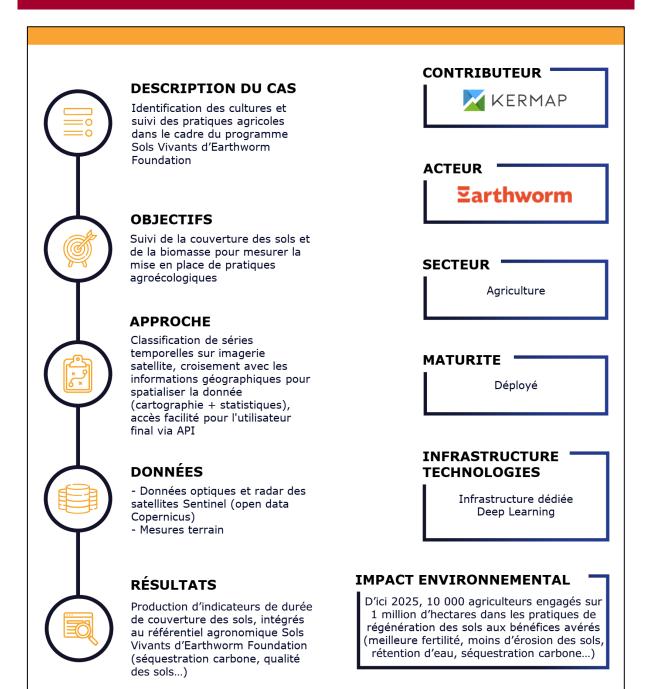
Hub France IA P. 18 / 26

opérations de rénovation


énergétique

4.2 RECONNAISSANCE D'ACTIVITE HUMAINE DANS LES BATIMENTS

Hub France IA P. 19 / 26


4.3 MESURE DES DEPERDITIONS THERMIQUES DES BATIMENTS

Hub France IA P. 20 / 26

5 AGRICULTURE

5.1 IDENTIFICATION DES CULTURES ET SUIVI DES PRATIQUES AGRICOLES

Hub France IA P. 21 / 26

6 ENVIRONNEMENT

6.1 CONTEXTUALISATION DE LA QUALITE DE L'AIR

DESCRIPTION DU CAS

Contextualisation de la qualité de l'air grâce au déploiement en Ile-de-France de micro-capteurs couplés à des caméras

OBJECTIFS

- Corréler les pics de pollution à des évènements terrain (présence de véhicules, dynamique de circulation, embouteillages...)
- Comprendre des phénomènes hyper locaux et identifier des leviers d'action « immédiats »

APPROCHE

- Campagnes d'acquisition des données
- Annotation des images (véhicules, piétons...) par des collaborateurs vidéocodeurs
- Entraînement des modèles de Deep Learning

DONNÉES

- Jeux de données publiques : Images 2D et 3D LIDAR
- Jeux de données Geoptis: prises de vue avant et arrière du véhicule (données issues des campagnes d'acquisition réalisées lors des tournées de véhicules)

RÉSULTATS

- Génération d'indicateurs quantitatifs sur l'environnement du véhicule (nombre de véhicules dans un certain rayon, type et vitesse des véhicules...)
- Fichiers vidéos de l'environnement

CONTRIBUTEUR

ACTEUR

SECTEUR

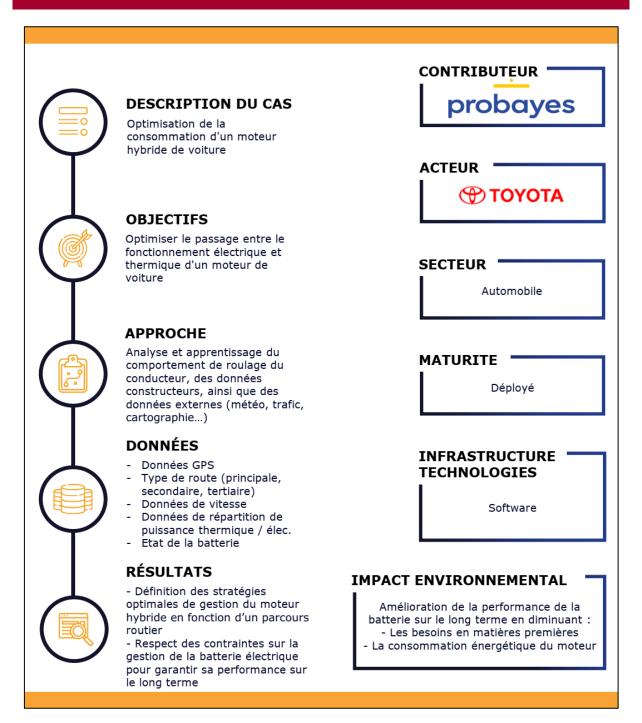
Collectivités

MATURITE

POC

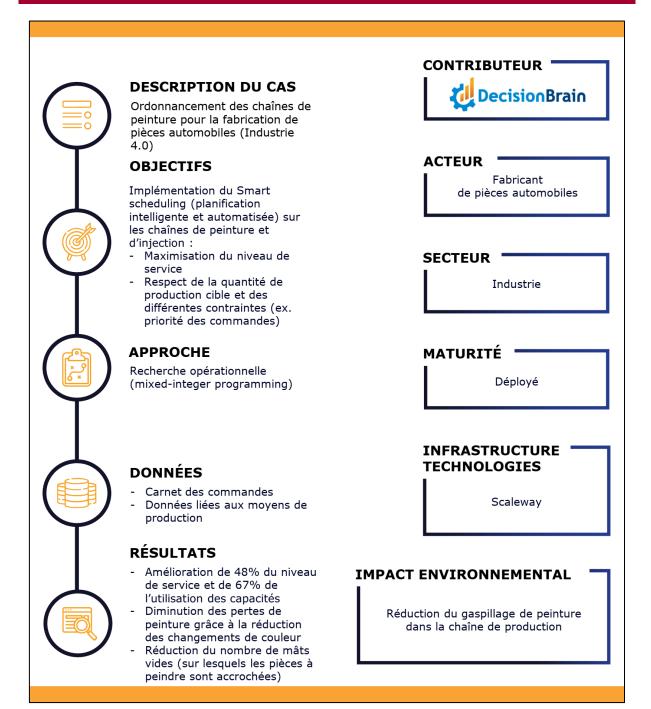
INFRASTRUCTURE TECHNOLOGIES

Computer Vision Deep Learning Micro-capteurs / LIDAR


IMPACT ENVIRONNEMENTAL

- Meilleure compréhension de la qualité de l'air et des causes associées aux pics de pollution
- Optimisation de la politique des actions publiques (ex : travaux publics)

Hub France IA P. 22 / 26


7 INDUSTRIE

7.1 OPTIMISATION DE LA CONSOMMATION D'UN MOTEUR HYBRIDE

Hub France IA P. 23 / 26

7.2 ORDONNANCEMENT DES CHAINES DE PEINTURE

Hub France IA P. 24 / 26

7.3 OPTIMISATION DES NETTOYAGES DE LIGNES DE PRODUCTION AGROALIMEN-TAIRES

DESCRIPTION DU CAS

Optimisation des nettoyages sur les lignes de production agroalimentaires à partir des captations faites lors des lavages

OBJECTIFS

Grâce à l'outil Thrasos procédant à une analyse 360 de l'ensemble des paramètres :

- Garantie de la bonne gestion des opérations de biosécurité
- Diminution des besoins de consommation durant les nettoyages

APPROCHE

Travaux de R&D autour de règles expertes métier afin de mettre en place une brique algorithmique d'optimisation des nettoyages en les validant par comparaison avec les lavages d'origine, non optimisés

DONNÉES

Données d'audit des équipements industriels et résultats des mesures des différents capteurs au cours des nettoyages effectués sur les lignes de production

RÉSULTATS

Réalisation d'un outil déployable en SaaS et en On-premise qui offre à chaque ligne de production agroalimentaire un programme de nettoyage 100% adapté et optimisé

CONTRIBUTEUR

ACTEUR

THRASOS
A.I for Food Safety

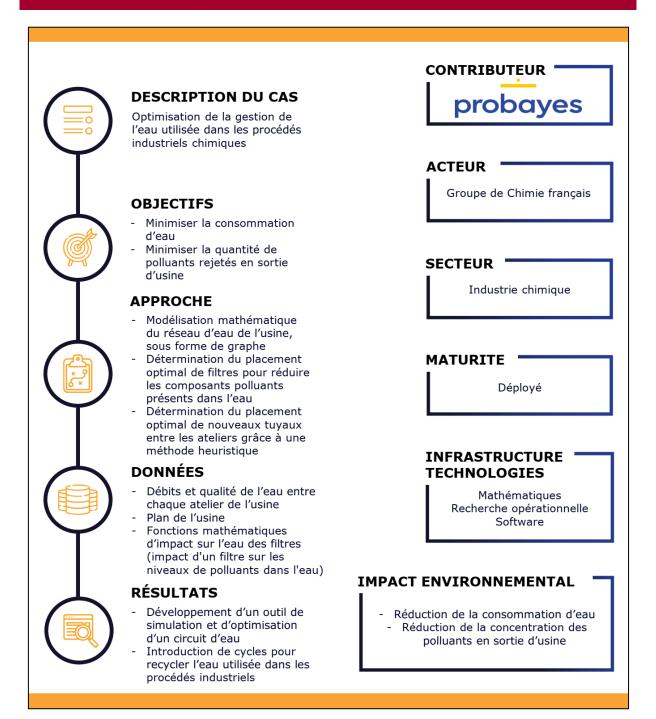
SECTEUR

Industrie agroalimentaire

MATURITE

MVP

INFRASTRUCTURE TECHNOLOGIES


Software Algorithmes d'analyses temporelles

IMPACT ENVIRONNEMENTAL

- Gestion de la biosécurité et de l'hygiène des aliments
- Optimisation de la consommation énergétique, d'eau et de produits chimiques

Hub France IA P. 25 / 26

7.4 OPTIMISATION DE LA GESTION DE L'EAU UTILISEE DANS LES PROCEDES IN-DUSTRIELS CHIMIQUES

Hub France IA P. 26 / 26